Item Description
15r/m .54KW Much more Than 6000hr Lifestyle Time 27C BX RVC Sequence Large Precision Cycloidal Machinery Gearbox
Design:27CBXRVC
More Code And Specification:
E series  C series  
Code  Outline dimension  General design  Code  Define dimension  The original code 
a hundred and twenty  Φ122  6E  10C  Φ145  a hundred and fifty 
a hundred and fifty  Φ145  20E  27C  Φ181  one hundred eighty 
one hundred ninety  Φ190  40E  50C  Φ222  220 
220  Φ222  80E  100C  Φ250  250 
250  Φ244  110E  200C  Φ345  350 
280  Φ280  160E  320C  Φ440  440 
320  Φ325  320E  500C  Φ520  520 
370  Φ370  450E 
Gear ratio And Specification
E Sequence  C Collection  
Code  Reduction Ratio  New code  Monomer reduction ratio 
a hundred and twenty  forty three,fifty three.5,59,seventy nine,103  10CBX  27.00 
one hundred fifty  eighty one,one zero five,121,141,161  27CBX  36.fifty seven 
one hundred ninety  eighty one,one hundred and five,121,153  50CBX  32.fifty four 
220  eighty one,one hundred and one,121,153  100CBX  36.seventy five 
250  81,111,161,one hundred seventy five.28  200CBX  34.86 
280  81,one zero one,129,a hundred forty five,171  320CBX  35.61 
320  eighty one,101,118.5,129,141,171,185  500CBX  37.34 
370  eighty one,a hundred and one,118.5,129,154.8,171,192.four  
Note 1: E sequence,such as by the shell(pin shell)output,the corresponding reduction ratio by 1  
Note 2: C series equipment ratio refers to the motor mounted in the casing of the reduction ratio,if mounted on the output flange side,the corresponding reduction ratio by one 
Reducer variety code
REV: major bearing developedin E sort
RVC: hollow type
REA: with input flange E variety
RCA: with input flange hollow type
Software:
Organization Information
FAQ
Q: What’re your principal items?
A: We at the moment create Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Equipment Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box and so on. You can verify the specifications for over motors on our web site and you can email us to advocate necessary motors for each your specification as well.
Q: How to select a ideal motor?
A:If you have motor pictures or drawings to demonstrate us, or you have detailed specs like voltage, velocity, torque, motor dimensions, working method of the motor, required life span and sound amount and so forth, please do not be reluctant to let us know, then we can advise appropriate motor per your ask for appropriately.
Q: Do you have a custommade provider for your standard motors?
A: Sure, we can customize for every your request for the voltage, velocity, torque and shaft dimensions/shape. If you need extra wires/cables soldered on the terminal or want to insert connectors, or capacitors or EMC we can make it also.
Q: Do you have an personal style support for motors?
A: Yes, we would like to design and style motors individually for our consumers, but it may need some mildew creating price and design and style charge.
Q: What is actually your guide time?
A: Normally talking, our regular common solution will want fifteen30days, a little bit longer for tailored merchandise. But we are extremely adaptable on the direct time, it will count on the particular orders.
Remember to contact us if you have detailed requests, thank you !
To Be Negotiated  1 Piece (Min. Order) 
###
Application:  Machinery, Robotic 

Hardness:  Hardened Tooth Surface 
Installation:  Vertical Type 
Layout:  Coaxial 
Gear Shape:  Cylindrical Gear 
Step:  DoubleStep 
###
Customization: 
Available


###
E series  C series  
Code  Outline dimension  General model  Code  Outline dimension  The original code 
120  Φ122  6E  10C  Φ145  150 
150  Φ145  20E  27C  Φ181  180 
190  Φ190  40E  50C  Φ222  220 
220  Φ222  80E  100C  Φ250  250 
250  Φ244  110E  200C  Φ345  350 
280  Φ280  160E  320C  Φ440  440 
320  Φ325  320E  500C  Φ520  520 
370  Φ370  450E 
###
E Series  C Series  
Code  Reduction Ratio  New code  Monomer reduction ratio 
120  43,53.5,59,79,103  10CBX  27.00 
150  81,105,121,141,161  27CBX  36.57 
190  81,105,121,153  50CBX  32.54 
220  81,101,121,153  100CBX  36.75 
250  81,111,161,175.28  200CBX  34.86 
280  81,101,129,145,171  320CBX  35.61 
320  81,101,118.5,129,141,171,185  500CBX  37.34 
370  81,101,118.5,129,154.8,171,192.4  
Note 1: E series,such as by the shell(pin shell)output,the corresponding reduction ratio by 1  
Note 2: C series gear ratio refers to the motor installed in the casing of the reduction ratio,if installed on the output flange side,the corresponding reduction ratio by 1 
To Be Negotiated  1 Piece (Min. Order) 
###
Application:  Machinery, Robotic 

Hardness:  Hardened Tooth Surface 
Installation:  Vertical Type 
Layout:  Coaxial 
Gear Shape:  Cylindrical Gear 
Step:  DoubleStep 
###
Customization: 
Available


###
E series  C series  
Code  Outline dimension  General model  Code  Outline dimension  The original code 
120  Φ122  6E  10C  Φ145  150 
150  Φ145  20E  27C  Φ181  180 
190  Φ190  40E  50C  Φ222  220 
220  Φ222  80E  100C  Φ250  250 
250  Φ244  110E  200C  Φ345  350 
280  Φ280  160E  320C  Φ440  440 
320  Φ325  320E  500C  Φ520  520 
370  Φ370  450E 
###
E Series  C Series  
Code  Reduction Ratio  New code  Monomer reduction ratio 
120  43,53.5,59,79,103  10CBX  27.00 
150  81,105,121,141,161  27CBX  36.57 
190  81,105,121,153  50CBX  32.54 
220  81,101,121,153  100CBX  36.75 
250  81,111,161,175.28  200CBX  34.86 
280  81,101,129,145,171  320CBX  35.61 
320  81,101,118.5,129,141,171,185  500CBX  37.34 
370  81,101,118.5,129,154.8,171,192.4  
Note 1: E series,such as by the shell(pin shell)output,the corresponding reduction ratio by 1  
Note 2: C series gear ratio refers to the motor installed in the casing of the reduction ratio,if installed on the output flange side,the corresponding reduction ratio by 1 
The Cyclonoidal Gearbox
Basically, the cycloidal gearbox is a gearbox that uses a cycloidal motion to perform its rotational movement. It is a very simple and efficient design that can be used in a variety of applications. A cycloidal gearbox is often used in applications that require the movement of heavy loads. It has several advantages over the planetary gearbox, including its ability to be able to handle higher loads and higher speeds.
Dynamic and inertial effects of a cycloidal gearbox
Several studies have been conducted on the dynamic and inertial effects of a cycloidal gearbox. Some of them focus on operating principles, while others focus on the mathematical model of the gearbox. This paper examines the mathematical model of a cycloidal gearbox, and compares its performance with the realworld measurements. It is important to have a proper mathematical model to design and control a cycloidal gearbox. A cycloidal gearbox is a twostage gearbox with a cycloid disc and a ring gear that revolves around its own axis.
The mathematical model is made up of more than 1.6 million elements. Each gear pair is represented by a reduced model with 500 eigenmodes. The eigenfrequency for the spur gear is 70 kHz. The modally reduced model is a good fit for the cycloidal gearbox.
The mathematical model is validated using ABAQUS software. A cycloid disc was discretized to produce a very fine model. It requires 400 element points per tooth. It was also verified using static FEA. This model was then used to model the stiction of the gears in all quadrants. This is a new approach to modelling stiction in a cycloidal gearbox. It has been shown to produce results comparable to those of the EMBS model. The results are also matched by the elastic multibody simulation model. This is a good fit for the contact forces and magnitude of the cycloid gear disc. It was also found that the transmission accuracy between the cycloid gear disc and the ring gear is about 98.5%. However, this value is lower than the transmission accuracy of the ring gear pair. The transmission error of the corrected model is about 0.3%. The transmission accuracy is less because of the lower amount of elastic deformation on the tooth flanks.
It is important to note that the most accurate contact forces for each tooth of a cycloid gearbox are not smooth. The contact force on a single tooth starts with a linear rise and then ends with a sharp drop. It is not as smooth as the contact force on a point contact, which is why it has been compared to the contact force on an ellipse contact. However, the contact on an ellipse contact is still relatively small, and the EMBS model is not able to capture this.
The FE model for the cycloid disc is about 1.6 million elements. The most important part of the FE model is the discretization of the cycloid disc. It is very important to do the discretization of the cycloid gear disc very carefully because of the high degree of vibration that it experiences. The cycloid disc has to be discretized finely so that the results are comparable to those of a static FEA. It has to be the most accurate model possible in order to be able to accurately simulate the contact forces between the cycloid disc and the ring gear.
Kinematics of a cycloidal drive
Using an arbitrary coordinate system, we can observe the motion of components in a cycloidal gearbox. We observe that the cycloidal disc rotates around fixed pins in a circle, while the follower shaft rotates around the eccentric cam. In addition, we see that the input shaft is mounted eccentrically to the rollingelement bearing.
We also observe that the cycloidal disc rotates independently around the eccentric bearing, while the follower shaft rotates around an axis of symmetry. We can conclude that the cycloidal disc plays a pivotal role in the kinematics of a cycloidal gearbox.
To calculate the efficiency of the cycloidal reducer, we use a model that is based on the nonlinear stiffness of the contacts. In this model, the nonlinearity of the contact is governed by the nonlinearity of the force and the deformation in the contact. We have shown that the efficiency of the cycloidal reducer increases as the load increases. In addition, the efficiency is dependent on the sliding velocity and the deformations of the normal load. These factors are considered as the key variables to determine the efficiency of the cycloidal drive.
We also consider the efficiency of the cycloidal reducer with the input torque and the input speed. We can calculate the efficiency by dividing the net torque in the ring gear by the output torque. The efficiency can be adjusted to suit different operating conditions. The efficiency of the cycloidal drive is increased as the load increases.
The cycloidal gearbox is a multistage gearbox with a small shaft oin and a big shaft. It has 19 teeth and brass washers. The outer discs move in opposition to the middle disc, and are offset by 180 deg. The middle disc is twice as massive as the outer disc. The cycloidal disc has nine lobes that move by one lobe per drive shaft revolution. The number of pins in the disc should be smaller than the number of pins in the surrounding pins.
The input shaft drives an eccentric bearing that is able to transmit the power to the output shaft. In addition, the input shaft applies forces to the cycloidal disk through the intermediate bearing. The cycloidal disk then advances in 360 deg/pivot/roller steps. The output shaft pins then move around in the holes to make the output shaft rotate continuously. The input shaft applies a sinusoidal motion to maintain the constant speed of the base shaft. This sine wave causes small adjustments to the follower shaft. The forces applied to the internal sleeves are a part of the equilibrium mechanism.
In addition, we can observe that the cycloidal drive is capable of transmitting a greater torque than the planetary gear. This is due to the cycloidal gear’s larger axial length and the ring gear’s smaller hole diameter. It is also possible to achieve a positive fit between the fixed ring and the disc, which is achieved by toothing between the fixed ring and the disc. The cycloidal disk is usually designed with a short cycloid to minimize unbalance forces at high speeds.
Comparison with planetary gearboxes
Compared to planetary gearboxes, the cycloidal gearbox has some advantages. These advantages include: low backlash, better overload capacity, a compact design, and the ability to perform in a wide range of applications. The cycloidal gearbox has become popular in the multiaxis robotics market. The gearbox is also increasingly used in first joints and positioners.
A cycloidal gearbox is a gearbox that consists of four basic components: a cycloid disk, an output flange, a ring gear, and a fixed ring. The cycloid disk is driven by an eccentric shaft, which advances in a 360deg/pivot/roller step. The output flange is a fixed pin disc that transmits the power to the output shaft. The ring gear is a fixed ring, and the input shaft is connected to a servomotor.
The cycloidal gearbox is designed to control inertia in highly dynamic situations. These gearboxes are generally used in robotics and positioners, where they are used to position heavy loads. They are also commonly used in a wide range of industrial applications. They have higher torque density and a low backlash, making them ideal for heavy loads.
The output flange is also designed to handle a torque of up to 500 Nm. Its rotational speed is lower than the planet gearbox, but its output torque is much higher. It is designed to be a highperformance gearbox, and it can be used in applications that need high ratios and a high level of torque density. The cycloid gearbox is also less expensive and has less backlash. However, the cycloidal gearbox has disadvantages that should be considered when designing a gearbox. The main problem is vibrations.
Compared to planetary gearboxes, cycloidal gearboxes have a smaller overall size and are less expensive. In addition, the cycloid gearbox has a large reduction ratio in one stage. In general, cycloidal gearboxes have single or two stages, with the third stage being less common. However, the cycloid gearbox is not the only type of gearbox that has this type of configuration. It is also common to find a planetary gearbox with a single stage.
There are several different types of cycloidal gearboxes, and they are often referred to as cycloidal speed reducers. These gearboxes are designed for any industry that uses servos. They are shorter than planetary gearboxes, and they are larger in diameter for the same torque. Some of them are also available with a ratio lower than 30:1.
The cycloid gearbox can be a good choice for applications where there are high rotational speeds and high torque requirements. These gearboxes are also more compact than planetary gearboxes, and are suitable for hightorque applications. In addition, they are more robust and can handle shock loads. They also have low backlash, and a higher level of accuracy and positioning accuracy. They are also used in a wide range of applications, including industrial robotics.
editor by czh 20230120